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Archimedes’s approximation of π 

The constant   is defined to be the circumference of a circle divided by its diameter.  

The value of   has been determined to an accuracy of more than twelve trillion decimal places. To 

the non-mathematician this may appear strange since it is not possible to measure the circumference 

and diameter of a circle to that degree of accuracy; this article explains how one of the greatest 5 

mathematicians of all time found the value of   to a high degree of accuracy without requiring any 

physical measurement. 

Archimedes (287-212 BC) lived in Syracuse, Sicily. He developed many branches of mathematics, 

including calculus, in which he devised methods for finding areas under parabolas nearly 2000 years 

before Newton and Leibniz, and mechanics, in which he found the centres of gravity of various plane 10 

figures and solids and devised a method for calculating the weight of a body immersed in a liquid.  

Whilst absorbed in a mathematical problem, Archimedes was killed by a soldier during the capture of 

Syracuse by the Romans.  

Archimedes’s method for determining the value of   is described below. 

Fig. C1 shows a circle with unit radius and two regular hexagons. 15 

The smaller regular hexagon has its vertices on the circle; it is called an inscribed polygon. Its 

perimeter is 6. 

The larger regular hexagon has the midpoints of its edges on the circle; it is called an escribed 

polygon. Its perimeter is 4 3 . 

The circumference of the circle is greater than the perimeter, ABCDEF, of the smaller hexagon but 20 

less than the perimeter, A'B'C'D'E'F' , of the larger hexagon. Dividing the perimeters by the diameter of 

the circle gives lower and upper bounds for   of 3 and 2 3 , so that  3 2 3  . 

Fig. C1 
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To find tighter bounds, Archimedes repeatedly doubled the number of edges in the two regular 

polygons, from 6 to 12, 24, 48 and finally 96. The process of doubling the number of edges is 

described below.  25 

Fig. C2 shows two adjacent vertices, P and Q, of a regular polygon inscribed in a circle with unit 

radius and centre O. PQ has length a. M is the midpoint of PQ. OM is extended to meet the circle at R. 

MR has length h. PR and RQ are adjacent edges of a regular polygon which has twice as many edges 

as the polygon which has PQ as an edge.  PR has length b.    

Applying Pythagoras’ Theorem  30 

 to triangle OMP gives  
2

2
1 1

4

a
h   ,  

 to triangle PMR gives 
2

2 2

4

a
b h  . 

For the inscribed regular hexagon, 1a  . Substituting 1a  in the equations above gives 
2 3

2
h


  

and 2 3b   ; this can be written in the equivalent form  
6 2

2
b


  . Therefore a regular 

polygon with 12 edges inscribed in a unit circle has edge length 
6 2

2


.  35 

Archimedes repeated this process to find the edge lengths of inscribed regular polygons with 24, 48 

and 96 edges, and then used a similar technique for escribed regular polygons. 

The inscribed and escribed regular polygons with 96 edges provide bounds for   which we now 

write, using decimal notation, as  

3.14103... 3.14271...   . 40 

 
 
 
 

Fig. C2 
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Formulae A Level Mathematics B (MEI) (H640) 

 

Arithmetic series 

1 1
2 2

( ) {2 ( 1) }nS n a l n a n d      

Geometric series 

(1 )

1

n

n

a r
S

r





 

for 1
1

a
S r

r
  


 

Binomial series 

1 2 2
1 2( ) C  C    C           ( )n n n n n n n n r r n

ra b a a b a b a b b n           , 

where 
!

C C
!( )!

n
r n r

n n

r r n r

 
   

 
 

   
2( 1) ( 1) ( 1)

(1 ) 1        1,   
2! !

   
        n rn n n n n r

x nx x x x n
r

 

Differentiation 

f ( )x  f ( )x  

tan kx   2seck kx  

sec x   sec tanx x  

cot x   2cosec x  

cosec x   cosec cotx x  

Quotient Rule 
u

y
v

 , 
2

d d

d d d

d

u v
v u

y x x

x v



  

Differentiation from first principles 

0

f ( ) f ( )
f ( ) lim

h

x h x
x

h

 
   

Integration 

f ( )
d ln f ( )

f ( )

x
x x c

x
 

  

   
11

f ( ) f ( ) d f ( )
1

n n
x x x x c

n


  

  

Integration by parts 
d d

d d
d d

v u
u x uv v x

x x
    

Small Angle Approximations 
21

2
sin , cos 1 , tan         where θ is measured in radians 

 

 

Spe
cim

en



3 
 

© OCR 2018 H640/03 Turn over 

Trigonometric identities 

sin( ) sin cos cos sinA B A B A B    

cos( ) cos cos sin sinA B A B A B   

1
2

tan tan
tan( )       ( ( ) )

1 tan tan

A B
A B A B k

A B



      

Numerical methods 

Trapezium rule: 1
0 1 22

d {( ) 2(
b

na
y x h y y y y     … 1) ny }, where 

b a
h

n


  

The Newton-Raphson iteration for solving f( ) 0x  : 1

f( )

f ( )

n
n n

n

x
x x

x
  


 

Probability 

P( ) P( ) P( ) P( )A B A B A B      

P( ) P( )P( | ) P( )P( | )A B A B A B A B        or      
P( )

P( | )
P( )

A B
A B

B


  

Sample Variance 
2

2 2 2 2 2( )1
 where ( )

1

i
xx xx i i i

x
s S S x x x x nx

n n
      




    

Standard deviation, variances   

The Binomial Distribution 

If ~B( , )X n p then ( ) Cn r n r
rP X r p q    where 1q p   

Mean of X is np 

Hypothesis testing for the mean of a Normal distribution 

If  2~ N ,X   then 
2

~ N ,X
n



 
  
 

and ~ N(0, 1)
/

X

n






 

Percentage points of the normal distribution  

  

 

Kinematics 

Motion in a straight line Motion in two dimensions 

v u at   t v u a  
21

2
s ut at 

 

21
2

t t s u a  

 1
2

s u v t 
 

 1
2

t s u v  

2 2 2v u as   
 

21
2

s vt at 
 

21
2

t t s v a  

  

p 10 5 2 1 

z 1.645 1.960 2.326 2.576 

Spe
cim

en



4 
 

© OCR 2018 H640/03 

Answer all the questions 

 

Section A (60 marks) 

 

1 Express 
2 5

1 2 1x x


 
 as a single fraction. [2] 

 

 

2  Find the first four terms of the binomial expansion of  
1
21 2x .  

 

  State the set of values of x for which the expansion is valid. [4] 

 

 

3  Show that points A (1, 4, 9), B (0, 11, 17) and C (3, –10, –7) are collinear.    [4] 

 

 

4  Show that 
4

1

ln ln5
1r

r

r

 


 . [3] 

 

 

5 In this question you must show detailed reasoning. 

 

 Fig. 5 shows the circle with equation 2 2( 4) ( 1) 10x y    . The points (1, 0)  and (7, 0)  lie on the circle. 

The point C is the centre of the circle.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 

 

   Find the area of the part of the circle below the x-axis. [5] 

 

  

 (7, 0) (1,0) 

C 

x 

y 

O 
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6  Fig. 6 shows the curve with equation 4 26 4 5y x x x    . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 

 

 Find the coordinates of the points of inflection. [5] 

 

 

7  By finding a counter example, disprove the following statement. 

 

                                    If p and q are non-zero real numbers with p q , then 
1 1

.
p q
  [2] 

 

 

 

  

O x 

y 
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8 In Fig. 8, OAB is a thin bent rod, with OA = 1 m, AB = 2 m and angle OAB = 120. Angles  ,   and h are 

as shown in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

Fig. 8 

 

   (i)  Show that sin 2sin( 60 )h      . [3] 

 

 The rod is free to rotate about the origin so that   and   vary. You may assume that the result for h in  

part (i) holds for all values of  . 

  

  (ii) Find an angle   for which 0h  . [5] 

 

 

9   (i) Express cos 2sin   in the form cos( )R   , where 1
2

0     and R is positive and given in exact 

form. [4] 

 

  The function f( ) is defined by  
 

1
f( )

cos 2sink


 


 
,  0 2   , k is a constant. 

 

  (ii)  The maximum value of f( )  is 
 3 5

4


. Find the value of k. [3] 

 

  

O x 

y 

E D 

C 
A 

B 

2 m 

1 m 

θ 

  120° 

h m 
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10  The function f( )x is defined by 4 3 2f( ) 2 4 2x x x x x     . 

 

   (i) Show that 1x    is a root of f( ) 0.x   [1] 

 

  (ii) Show that another root of f( ) 0x   lies between 1x   and 2x  . [2] 

 

 (iii) Show that f( ) ( 1)g( )x x x  , where 3g( )x x ax b    and a and b are integers to be determined. [3] 

 

 (iv) Without further calculation, explain why g( ) 0x   has a root between 1x   and 2.x   [1] 

 

  (v) Use the Newton-Raphson formula to show that an iteration formula for finding roots of g( ) 0x  may 

be written  

3

1 2

2 2

3 2

n
n

n

x
x

x






. 

 

 Determine the root of g( ) 0x  which lies between 1x   and 2x correct to 4 significant figures. [3] 

 

 

11  The curve f ( )y x  is defined by the function f( ) e sinxx x  with domain 0 4x   . 

 

 (i)  (A) Show that the x-coordinates of the stationary points of the curve f ( )y x , when arranged in 

   increasing order, form an arithmetic sequence. 

 

  (B) Show that the corresponding y-coordinates form a geometric sequence. [9] 

 

  (ii) Would the result still hold with a larger domain? Give reasons for your answer [1] 
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Answer all the questions 

 

Section B (15 marks) 

 

The questions in this section refer to the article on the Insert. You should read the article before attempting 

the questions. 

 

12    Explain why the smaller regular hexagon in Fig. C1 has perimeter 6. [1]  

 

 

13   Show that the larger regular hexagon in Fig. C1 has perimeter 4 3 .  [3] 

 

 

14  Show that the two values of b given on line 34 are equivalent.  [3] 

 

 

15   Fig. 15 shows a unit circle and the escribed regular polygon with 12 edges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 

  

   (i)  Show that the perimeter of the polygon is 24tan15 . [2] 

      

  (ii)  Using the formula for tan( )   show that the perimeter of the polygon is 48 24 3 . [3] 
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