OCTA Cambridge and RSA			
day June 20XX – Morning	Afternoon		
AS Level Mathematics A H230/01 Pure Mathematics and Stat	istics		
SAMPLE MARK SCHEME			Duration: 1 hour 30 minutes
MAXIMUM MARK 75		3	

This document consists of 16 pages

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
soi www	Seen or implied Without wrong working
	Without wrong working Answer given
www AG awrt	Without wrong working Answer given Anything which rounds to
www AG	Without wrong working Answer given

2. Subject-specific Marking Instructions for A Level Mathematics A

- a Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner. If you are in any doubt whatsoever you should contact your Team Leader.
- c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

H230/01

Mark Scheme

d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only – differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for *g*. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

Mark Scheme

	Question	Answer	Marks	AO	Guidance	
1	(i)	$18x^2$	B1	1.1		
		-5	B1	1.1		
			[2]			
1	(ii)	f''(x) = 36x	M1	1.1	FT their (i)	
		f''(2) = 72	A1FT	1.1	FT their (i)	
			[2]			
2	(i)	$\left(\frac{3+9}{2},\frac{0+8}{2}\right)$	M1	1.1a	Correct working for <u>either</u> coordinate	
		$\left(\frac{1}{2},\frac{1}{2}\right)$			May be implied by $x = 6$ or $y = 4$	
		(6, 4)	A1	1.1		
			[2]			
2	(ii)	Gradient of radius through B is $\frac{8-4}{9-6} = \frac{4}{3}$	M1	1.1		
		9-6 3	•			
		Gradient of tangent is $-\frac{3}{4}$	M1	1.1	FT their gradient	
		So equation of tangent is $y = -\frac{3}{4}x + \frac{59}{4}$ oe	A1	2.2a		
			[3]			
3		e.g. $(2-(-1))^2 + (10-6)^2$	M1	3.1a	Find at least one of PQ^2 , QR^2 or RP^2	or PQ, QP or QR seen
		$PQ^2 = 25, QR^2 = 162, RP^2 = 169$	A1	1.1		
		$(BBQ) = \cos^{-1} 169 + 162 - 25$	M1	1.1	Use cosine rule to find an angle of	
		$\angle PRQ = \cos^{-1} \frac{169 + 162 - 25}{2 \times 13 \times \sqrt{162}}$			triangle PQR	
		= 22.4 to 3 sf	A1	1.1	Accept 3 sf or better (22.38013503)	
			[4]			

H230/01

H230/01

	Juestio	on	Answer	Marks	AO	Guidance	
4	(i)			M1	3.1 a	Attempt differentiation	
			$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 6x - k$	A1	1.1		
			At $x = 2$ there is a stationary point, so $\frac{dy}{dx} = 0$	E1	2.1	Explain the substitution step	
			$6 \times 2^2 + 6 \times 2 - k = 0$	M1	1.1 a	Substitute $x = 2$ in their $\frac{dy}{dx} = 0$	
			<i>k</i> = 36	A1FT	1.1	FT their $\frac{dy}{dx} = 0$	
				[5]			
4	(ii)		d^2y	M1	1.1	Attempt differentiation again and	OR
			$\frac{d^2 y}{dx^2} = 12x + 6$ and $12 \times 2 + 6 (= 30)$	•		substitute $x = 2$, FT their $\frac{dy}{dx}$	M1 Attempt to evaluate gradient or <i>y</i> either side
			$\frac{d^2 y}{dx^2} > 0$ hence minimum	A1FT	2.2a	Correct conclusion FT www from their $\frac{d^2 y}{dx^2}$ at $x = 2$	A1 Correct values and conclusion
				[2]		dx ²	M1 For a complete sketch (all intercepts and both turning points identified)A1 for conclusion given.
			9				

H230/01	
---------	--

(Questic	on	Answer	Marks	AO	Guidance	9
5	(i)			M1	1.1a	Attempt to integrate	At least one power
			$\frac{1}{4}x^4$	A1	1.1		increases by one
			$-3x^2 + c$	A1	1.1	Correct integral including $+c$	
				[3]			
5	(ii)	(a)	$\frac{4}{x^2} = 4x^{-2}$	B1	1.1	soi	
			$-4x^{-1}\dots$	M1	1.1a	Attempt to integrate a power not a positive integer	
			-x+c oe	A1	1.1	Correct integral including $+c$	
				[3]		Penalise omission of $+c$ only once	
5	(ii)	(b)	$\binom{2}{4} \binom{4}{5} \binom{5}{4} \binom{4}{5} \binom{4}$	M1	3.1 a	Add absolute areas	Both M1 and A1 may be
			$\int_{1}^{2} \left(\frac{4}{x^{2}} - 1\right) dx - \int_{2}^{5} \left(\frac{4}{x^{2}} - 1\right) dx$	A1FT	1.1	Correct integrals seen or	implied by correct answer
						$\left[their(ii)(a)\right]_{1}^{2} - \left[their(ii)(a)\right]_{2}^{5}$	
			Area = $2\frac{4}{5}$ oe	A1	1.1	BC	SC1 for $-\frac{4}{5}$ or $\frac{4}{5}$
				[3]			
			5				

(Question	Answer	Marks	AO	Guidance	
6	(i)	DR $f(\frac{1}{2}) = 4(\frac{1}{2})^3 + 4(\frac{1}{2})^2 + 7(\frac{1}{2}) - 5$ $= \frac{1}{2} + 1 + \frac{7}{2} - 5 = 0$	*M1	2.1	Must show an intermediate line of reasoning without brackets or indices	OR *M1 Attempt to divide f(x) by $(2x-1)$
		Since $f(\frac{1}{2}) = 0$ therefore $(2x-1)$ is a factor	dep*E1 [2]	2.1		dep*E1 State 'No remainder, hence $2x-1$ is a factor'
6	(ii)	DR				
Ū		Substituting $x = \sin \theta$ into the equation in part (i) gives the equation in part (ii)	M1	3.1 a	Connect the equations given in part (i) and (ii)	Must be shown
		so since $x = \frac{1}{2}$ is a solution in part (i), $\sin \theta = \frac{1}{2}$ is a solution in part (ii)	E1	3.2a	Interpret to give a solution for the equation	
		Hence $\theta = 30$ or 150	A1	1.1	for both correct with no extras	
		Attempt method for finding quadratic factor in terms of <i>x</i> or $\sin \theta$	M1	1.1 a	Attempt to obtain quadratic factor by any correct method	Or consider the existence of further solutions, e.g. by calculus
		$2x^2 + 3x + 5$	A1	1.1		
		$2x^2 + 3x + 5 = 0$ has no solutions because $D = 9 - 4 \times 2 \times 5 < 0$	M1	2.1	Attempt to solve the quadratic factor	
		So there are no more solutions of the given equation	E1	2.4	Explicitly use $b^2 - 4ac < 0$ oe	
			[7]			

(Questic	n	Answer	Marks	AO	Guidance	
7	(i)		$x = \frac{3}{2}, x = -1$	B1 B1	1.1	BC Correct roots Good curve: Correct shape, symmetrical	
			-1 -3	B1 [3]	1.1	 Correct shape, symmetrical positive quadratic FT Minimum point in the correct quadrant for their roots FT their <i>x</i> intercepts correctly labelled <i>y</i> intercept at (0, -3) 	Must have a curve
7	(ii)			M1	1.1	Choosing the interval between their <i>x</i> intercepts	
			$x \in \left(-1, \frac{3}{2}\right)$	A1FT	1.1	This interval identified clearly FT their <i>x</i> values in part (i)	Other clear notation is acceptable
				[2]			

H230/01

(Question	Answer	Marks	AO	Guida	nce
7	(iii)	No real roots implies that the discriminant is				OR
		negative				
		$b^2 - 4ac = 1^2 - 4 \times 2 \times -(3+k) < 0$	M1	3.1 a		M1 Attempt to find turning
						point and use $k < y_{\min}$
		25 + 8k < 0	A1	1.1		A1 Turning point at
						$\left(\frac{1}{4},-\frac{25}{8}\right)$
		$k < -\frac{25}{8}$	A1	3.2a		
			[3]			
8	(i)	E.g. Members who attend may be of a particular	B1	2.5	Any correct explanation	
		type			Sample is not random B0	
		E.g. Absent members cannot be included				
			[1]			
8	(ii)	156, 248	B1	1.1		965 must be discarded
		73, 181	B1	1.1	Allow 073	In this context do not
						accept a repeat of 156
			[2]			
		6				

(Questio	n	Answer	Marks	AO	Guidance	
9			0.6×0.3 or 0.6×0.1 or 0.3×0.1	M1	3.1a	Any correct product seen, oe	OR M1 $0.6^2 + 0.3^2 + 0.1^2 (= 0.46)$
			$0.6 \times 0.3 + 0.6 \times 0.1 + 0.3 \times 0.1$ oe	M1	1.1	Fully correct method	M1 0.5×(1−'0.46')
			= 0.27	A1 [3]	1.1		
10	(i)		$y^7 + 7xy^6 + 21x^2y^5 + 35x^3y^4$	B2 [2]	1.1 1.1	B1 for three terms correct	
10	(ii)		$21x^2y^5 = 35x^3y^4$	M1	3.1 a	Equate their terms in $x^2 y^5$ and $x^3 y^4$	
			$\frac{x}{y} = \frac{3}{5} \text{ or } 0.6$	A1 [2]	1.1		
10	(iii)		$P(L=k) = {}_{7}C_{k}\left(\frac{3}{8}\right)^{k}\left(\frac{5}{8}\right)^{k}$ $P(L=2) = {}_{7}C_{2}\left(\frac{3}{8}\right)^{2}\left(\frac{5}{8}\right)^{5}$	M1	3.3	Seen or implied	
			and P(L=3) = $_7C_3\left(\frac{3}{8}\right)^3 \left(\frac{5}{8}\right)^4$ So P(L=2) = $21 \times \frac{3^2 \times 5^5}{8^7} = 7 \times \frac{3^3 \times 5^5}{8^7}$	M1	3.4	Attempt to find the probabilities for each case	
			and P(L=3)=35× $\frac{3^3 \times 5^4}{8^7}$ =7× $\frac{3^3 \times 5^5}{8^7}$ so they are equal	E1	2.1	For both values and a conclusion	

(Questio	n Answer	Marks	AO	Guidance	
11	(i)	$\begin{array}{c} 0.25 \\ 1000 \\ 0.20 \\ 0.05 \\ 0.15 \\ 0.00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	B1 [1]	2.2b	At least the three with solid rings. No extras other than those in the dashed ring.	
11	(ii)	0.25 10000 0.20 0.10 0.15 0.00 0.10 0.05 0.00 0 100,000 200,000 400,000 500,000 600,000 Population	BI	2.2b	For identifying (not necessarily using the diagram) the two subpopulations shown as being one in which there is a positive correlation between the two variables, and one in which larger populations do not appear to lead to increases in the proportion travelling by bus.	Identifying <i>some</i> points of those ringed as being in different subpopulations
		e.g. the dotted ringed group are "metropolitan districts" which have good infrastructure, so they have high proportions of travelling by bus.The solid ringed group are probably large "unitary authorities" which are not urban, so they don't have good bus services.The unringed points are a mix of small "unitary	E1 E1	1.2 2.3	For identifying two distinct subpopulations in terms of the structure of the large data set For explaining why it might be	
		authorities" and "non-metropolitan districts" which are difficult to tell apart with these data.	[3]		difficult to tell the others apart.	

H230/01

(Question		Answer	Marks	AO	Guidance	
12	(i)		$H_0: p = 0.097$	B 1	1.1	Must be stated in terms of parameters	
			$H_1: p > 0.097$ where p is the proportion of	B1	2.5	Undefined <i>p</i> B1B0	
			patients experiencing side effects within a year				
			$X \sim B(450, 0.097)$ and $X = 50$	M1	3.3	Stated or implied	Only 0.138 seen without
							parameters/distribution
			$P(X \ge 51) = 1 - 0.862 = 0.138 (3 \text{ s.f.})$	A1	3.4	BC	M1AO
			Comparison with 0.1	A1	1.1		
			Do not reject H ₀	M1	1.1		
			No evidence (at 10% level) that proportion under	A1	2.2b	In context, not definite, e.g. Proportion	FT their 0.138, but not
			new treatment greater than under standard			not greater A0	comparison with 0.1
			treatment				
				[7]			
12	(ii)		E.g. The patients could be treated together so they	B1	3.5a	In context, referring to independence	
			are not independent, so the binomial model is not			or random sampling. Must include a	
			valid.			comment on appropriateness.	
			E.g. The 450 patients are not a random sample				
			from the population, so the binomial model is not				
			valid.				
			E.g. It is not known whether the proportion of				
			patients experiencing side effects under the				
			standard treatment is 9.7%, so the binomial model				
			used may not be valid.	F41			
				[1]			