Question	Scheme	Marks	AOs
1 (Way 1)	Uses $y = mx + c$ with both (3,1) and (4, -2) and attempt to find <i>m</i> or <i>c</i>	M1	1.1b
	m = -3	A1	1.1b
	c = 10 so y = -3x + 10 o.e.	A1	1.1b
		(3)	
Or (Way 2)	Uses $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$ with both (3,1) and (4, -2)	M1	1.1b
	Gradient simplified to -3 (may be implied)	A1	1.1b
	y = -3x + 10 o.e.	A1	1.1b
		(3)	
Or (Way 3)	Uses $ax + by + k = 0$ and substitutes both $x = 3$ when $y = 1$ and $x = 4$ when $y = -2$ with attempt to solve to find a, b or k in terms of one of them	M1	1.1b
	Obtains $a = 3b$, $k = -10b$ or $3k = -10a$	A1	1.1b
	Obtains $a = 3, b = 1, k = -10$ Or writes $3x + y - 10 = 0$ o.e.	A1	1.1b
		(3)	
		(3 marks)
	Notes		
	correct use of the given coordinates		
	Fractions simplified to -3 (in ways 1 and 2)		
	constants combined accurately ver left in the form $(y-1) = -3(x-3)$ or $(y-(-2)) = -3(x-4)$ is	awardad M	1 4 1 4 0
	should be simplified by constants being collected		IAIAU
	correct answer implies all three marks in this question.		

Paper 1: Pure Mathematics Mark Scheme

Question	Scheme	Marks	AOs
2	Attempt to differentiate	M1	1.1a
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 12$	A1	1.1b
	Substitutes $x = 5 \implies \frac{dy}{dx} =$	M1	1.1b
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 8$	A1ft	1.1b
		(4	marks)

Notes

- M1: Differentiation implied by one correct term
- A1 : Correct differentiation
- M1 : Attempts to substitute x = 5 into their derived function
- A1ft: Substitutes x = 5 into **their** derived function **correctly** i.e. Correct calculation of their f'(5) so follow through slips in differentiation

Question	Scheme	Marks	AOs		
3 (a)	Attempts $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or similar	M1	1.1b		
	$\overrightarrow{AB} = 5\mathbf{i} + 10\mathbf{j}$	A1	1.1b		
		(2)			
(b)	Finds length using 'Pythagoras' $ AB = \sqrt{(5)^2 + (10)^2}$	M1	1.1b		
	$ AB = 5\sqrt{5}$	A1ft	1.1b		
		(2)			
		(4	marks)		
	Notes				

- (a) M1: Attempts subtraction but may omit brackets A1: cao (allow column vector notation)
 (b) M1: Correct use of Pythagoras theorem or modulus formula
 - (b) M1: Correct use of Pythagoras theorem or modulus formula using their answer to (a) A1ft: $|AB| = 5\sqrt{5}$ ft from their answer to (a)

Note that the correct answer implies M1A1 in each part of this question

Question	Scheme	Marks	AOs
4 (a)	States or uses $f(+3) = 0$	M1	1.1b
	$4(3)^3 - 12(3)^2 + 2(3) - 6 = 108 - 108 + 6 - 6 = 0$ and so $(x - 3)$ is a factor	A1	1.1b
		(2)	
(b)	Begins division or factorisation so $4x^3 - 12x^2 + 2x - 6 = (x - 3)(4x^2 +)$	M1	2.1
	$4x^3 - 12x^2 + 2x - 6 = (x - 3)(4x^2 + 2)$	A1	1.1b
	Considers the roots of their quadratic function using completion of square or discriminant	M1	2.1
	$(4x^2+2) = 0$ has no real roots with a reason (e.g. negative number does not have a real square root, or $4x^2+2 > 0$ for all x) So $x = 3$ is the only real root of $f(x) = 0$ *	A1*	2.4
		(4)	
		(6	marks)
	Notes		
. ,	ates or uses $f(+3) = 0$		
	ee correct work evaluating and achieving zero, together with correct eeds to have $(x - 3)$ and first term of quadratic correct	conclusion	
A1: M	ust be correct – may further factorise to $2(x-3)(2x^2+1)$		
M1: Co	onsiders their quadratic for no real roots by use of completion of the onsideration of discriminant then	square or	

A1*: a correct explanation.

Question	Scheme	Marks	AOs	
5	$f(x) = 2x + 3 + 12x^{-2}$	B1	1.1b	
	Attempts to integrate	M1	1.1a	
	$\int \left(+2x + 3 + \frac{12}{x^2} \right) dx = x^2 + 3x - \frac{12}{x}$	A1	1.1b	
	$\left((2\sqrt{2})^2 + 3(2\sqrt{2}) - \frac{12(\sqrt{2})}{2\times 2}\right) - (-8)$	M1	1.1b	
	$=16+3\sqrt{2}*$	A1*	1.1b	
	(5 marks)			

Notes

B1: Correct function with numerical powers

- M1: Allow for raising power by one. $x^n \rightarrow x^{n+1}$
- A1: Correct three terms

M1: Substitutes limits and rationalises denominator

A1*: Completely correct, no errors seen.

Question	Scheme	Marks	AOs				
6	Considers $\frac{3(x+h)^2 - 3x^2}{h}$	B1	2.1				
	Expands $3(x+h)^2 = 3x^2 + 6xh + 3h^2$	M1	1.1b				
	so gradient = $\frac{6xh+3h^2}{h} = 6x+3h$ or $\frac{6x\delta x+3(\delta x)^2}{\delta x} = 6x+3\delta x$	A1	1.1b				
	States as $h \rightarrow 0$, gradient $\rightarrow 6x$ so in the limit derivative = $6x^*$						
		(4	marks)				
	Notes						
B1: gives	correct fraction as in the scheme above or $\frac{3(x+\delta x)^2-3x^2}{\delta x}$						
M1: Expan	M1: Expands the bracket as above or $3(x+\delta x)^2 = 3x^2 + 6x\delta x + 3(\delta x)^2$						
A1*: Comp	itutes correctly into earlier fraction and simplifies pletes the proof, as above (may use $\delta x \rightarrow 0$), considers the limit an usion with no errors	d states a					

Question	Scheme	Marks	AOs		
7(a)	$\left(2 - \frac{x}{2}\right)^7 = 2^7 + \binom{7}{1} 2^6 \cdot \left(-\frac{x}{2}\right) + \binom{7}{2} 2^5 \cdot \left(-\frac{x}{2}\right)^2 + \dots$	M1	1.1b		
	$\left(2-\frac{x}{2}\right)^7 = 128 + \dots$	B1	1.1b		
	$\left(2-\frac{x}{2}\right)^7 = \dots -224x + \dots$	A1	1.1b		
	$\left(2 - \frac{x}{2}\right)^7 = \dots + \dots + 168x^2 (+ \dots)$	A1	1.1b		
		(4)			
(b)	Solve $\left(2-\frac{x}{2}\right) = 1.995$ so $x = 0.01$ and state that 0.01 would be	B1	2.4		
	substituted for x into the expansion				
		(1)			
		(5 marks)		
	Notes				
(a) M1: N	eed correct binomial coefficient with correct power of 2 and correct	power of x			
Co	Coefficients may be given in any correct form; e.g. 1, 7, 21 or 7C_0 , 7C_1 , 7C_2 or equivalent				
	B1: Correct answer, simplified as given in the scheme. A1: Correct answer, simplified as given in the scheme.				

A1: Correct answer, simplified as given in the scheme.
A1: Correct answer, simplified as given in the scheme.
(b) B1: Needs a full explanation i.e. to state x = 0.01 and that this would be substituted and that it

is a solution of $\left(2-\frac{x}{2}\right) = 1.995$

Question	Sci	heme	Marks	AOs
8(a)	Finds third angle of triangle and uses or states $\frac{x}{\sin 60^{\circ}} = \frac{30}{\sin'' 50^{\circ''}}$	Finds third angle of triangle and uses or states $\frac{y}{\sin 70^{\circ}} = \frac{30}{\sin" 50^{\circ}"}$	M1	2.1
	So $x = \frac{30\sin 60^{\circ}}{\sin 50^{\circ}}$ (= 33.9)	So $y = \frac{30\sin 70^{\circ}}{\sin 50^{\circ}}$ (= 36.8)	A1	1.1b
	Area = $\frac{1}{2} \times 30 \times x \times \sin 70^{\circ}$	or $\frac{1}{2} \times 30 \times y \times \sin 60$	M1	3.1a
	$= 478 m^2$		A1ft	1.1b
			(4)	
(b)	Plausible reason e.g. Because th not given to four significant figu Or e.g. The lawn may not be fla		B1	3.2b
			(1)	
			(5	5 marks)
		Notes		
A1: fine	es sine rule with their third angle t ds expression for, or value of eith appletes method to find area of tri	0	ngths	

M1: Completes method to find area of triangle

A1ft: Obtains a correct answer for their value of *x* or their value of *y*.

(b) B1: As information given in the question may not be accurate to 4sf or the lawn may not be flat so modelling by a plane figure may not be accurate.

Question	Scheme	Marks	AOs
9	Uses $\sin^2 x = 1 - \cos^2 x \implies 12(1 - \cos^2 x) + 7\cos x - 13 = 0$	M1	3.1a
	$\Rightarrow 12\cos^2 x - 7\cos x + 1 = 0$	A1	1.1b
	Uses solution of quadratic to give $\cos x =$	M1	1.1b
	Uses inverse cosine on their values, giving two correct follow through values (see note)	M1	1.1b
	$\Rightarrow x = 430.5^\circ, 435.5^\circ$	A1	1.1b
		(5	marks)

Notes

M1: Uses correct identity

A1: Correct three term quadratic

M1: Solves their three term quadratic to give values for $\cos x$ – (The correct answers are $\cos x = \frac{1}{3}$ or $\frac{1}{4}$ but this is not necessary for this method mark)

- M1: Uses inverse cosine on their values, giving two correct follow through values may be outside the given domain
- A1: Two correct answers in the given domain

Question	Scheme	Marks	AOs
10	Realises that $k = 0$ will give no real roots as equation becomes $3 = 0$ (proof by contradiction)	B1	3.1a
	(For $k \neq 0$) quadratic has no real roots provided $b^2 < 4ac$ so $16k^2 < 12k$	M1	2.4
	4k(4k-3) < 0 with attempt at solution	M1	1.1b
	So $0 < k < \frac{3}{4}$, which together with $k = 0$ gives $0 \le k < \frac{3}{4}*$	A1*	2.1
		(4	marks)

Notes

- B1 : Explains why k = 0 gives no real roots
- M1 : Considers discriminant to give quadratic inequality does not need the $k \neq 0$ for this mark
- M1 : Attempts solution of quadratic inequality
- A1*: Draws conclusion, which is a printed answer, with no errors (dependent on all three previous marks)

Question	Scheme	Marks	AOs
11 (a) Way 1	Since x and y are positive, their square roots are real and so $(\sqrt{x} - \sqrt{y})^2 \ge 0$ giving $x - 2\sqrt{x}\sqrt{y} + y \ge 0$	M1	2.1
	$\therefore 2\sqrt{xy} \le x + y \text{ provided } x \text{ and } y \text{ are positive and so}$ $\sqrt{xy} \le \frac{x + y}{2} *$	A1*	2.2a
		(2)	
Way 2 Longer method	Since $(x - y)^2 \ge 0$ for real values of x and y, $x^2 - 2xy + y^2 \ge 0$ and so $4xy \le x^2 + 2xy + y^2$ i.e. $4xy \le (x + y)^2$	M1	2.1
	$\therefore 2\sqrt{xy} \le x + y \text{ provided } x \text{ and } y \text{ are positive and so}$ $\sqrt{xy} \le \frac{x + y}{2} *$	A1*	2.2a
		(2)	
(b)	Let $x = -3$ and $y = -5$ then LHS = $\sqrt{15}$ and RHS= -4 so as $\sqrt{15} > -4$ result does not apply	B1	2.4
		(1)	
		(3	marks)
	Notes		
	Need two stages of the three stage argument involving the three st guare rooting terms and rearranging	ages, squari	ng,

- square rooting terms and rearranging. A1*: Need all three stages making the correct deduction to achieve the printed result.
- $A1^{\circ}$. Need all three stages making the correct deduction to achieve the printed rest (b) = B1: Chooses two negative values and substitutes, then states conclusion
- (b) B1 : Chooses two negative values and substitutes, then states conclusion

Question	So	cheme	Marks	AOs
12(a)	$2^{2x} + 2^4$ is wrong in line 2 - it s	should be $2^{2x} \times 2^4$	B1	2.3
	In line 4, 2^4 has been replaced	by 8 instead of by 16	B1	2.3
			(2)	
(b)	Way 1 $2^{2x+4} - 9(2^{x}) = 0$ $2^{2x} \times 2^{4} - 9(2^{x}) = 0$ Let $2^{x} = y$ $16y^{2} - 9y = 0$	Way 2 $(2x+4)\log 2 - \log 9 - x\log 2 = 0$	M1	2.1
	$y = \frac{9}{16}$ or $y = 0$ So $x = \log_2(\frac{9}{16})$ or $\frac{\log(\frac{9}{16})}{\log 2}$ o.e. with no second answer.	$x = \frac{\log 9}{\log 2} - 4 \text{ o.e.}$	A1	1.1b
			(2)	marks)
		Notes	(-	man NS)
B1 (b) M1	Lists error in line 2 (as above) Lists error in line 4 (as above) Correct work with powers reach Correct answer here – there are	ning this equation		

Question	Scheme		Marks	AOs
13(a)	$x^3 + 10x^2 + 25x = x(x^2 + 10x + 25)$		M1	1.1b
	$=x(x+5)^2$		A1	1.1b
			(2)	
(b)	y/	A cubic with correct orientation	M1	1.1b
		Curve passes through the origin $(0, 0)$ and touches at $(-5, 0)$ (see note below for ft)	A1ft	1.1b
			(2)	
(c)	Curve has been translated <i>a</i> to the left		M1	3.1a
	a = -2		A1ft	3.2a
	<i>a</i> = 3		A1ft	1.1b
			(3)	
			(*	7 marks)
	Notes			
A1: (b) M1: A1f (c) M1: A1f	Takes out factor x Correct factorisation - allow $x(x+5)(x+5)$ Correct shape t: Curve passes through the origin (0, 0) and from incorrect factorisation May be implied by one of the correct answ t: ft from their cubic as long as it meets the t : ft from their cubic as long as it meets the	touches at $(-5, 0) - a$ vers for <i>a</i> or by a statem <i>x</i> -axis only twice.		[,] through

Question	Scheme		AOs
14(a)	$\log_{10} P = mt + c$		1.1b
	$\log_{10} P = \frac{1}{200}t + 5$	A1	1.1b
		(2)	
(b)	Way 1: As $P = ab^{t}$ then $\log_{10} P = t \log_{10} b + \log_{10} a$ $P = 10^{\left(\frac{t}{200} + 5\right)} = 10^{5} 10^{\left(\frac{t}{200}\right)}$	M1	2.1
	$\log_{10} b = \frac{1}{200}$ or $\log_{10} a = 5$ $a = 10^5$ or $b = 10^{\left(\frac{1}{200}\right)}$	M1	1.1b
	so <i>a</i> = 100 000 or <i>b</i> = 1.0116	A1	1.1b
	both <i>a</i> = 100 000 and <i>b</i> = 1.0116 (awrt 1.01)	A1	1.1b
		(4)	
(c)	(i) The initial population		3.4
	(ii) The proportional increase of population each year		3.4
(d)	(i) 300000 to nearest hundred thousand		3.4
	(ii) Uses $200000 = ab^t$ with their values of a and b or $\log_{10} 200000 = \frac{1}{200}t + 5$ and rearranges to give $t =$		3.4
	60.2 years to 3sf		1.1b
		(3)	
(e)	 (e) Any two valid reasons- e.g. 100 years is a long time and population may be affected by wars and disease Inaccuracies in measuring gradient may result in widely different estimates Population growth may not be proportional to population size The model predicts unlimited growth 		3.5b
		(2)	
		(1.	3 marks)
A1: Corn (b) M1: Way log equa M1: Way A1: Corn A1: Corn (c) (i) B1: 4 (ii) B1: 5 incr (d) (i) B1: 6 (ii) M1:	Notes s a linear equation to relate log <i>P</i> and <i>t</i> rect use of gradient and intercept to give a correct line equation y 1: Uses logs correctly to give log equation; Way 2 Uses powers correction and expresses as product of two powers y 1: Identifies log <i>b</i> or log <i>a</i> or both; Way 2: identifies <i>a</i> or <i>b</i> as power rect value for <i>a</i> or <i>b</i> rect values for both Accept equivalent answers e.g. The population at $t = 0$ So accept rate at which the population is increasing each year or scale f rease of 1% per year cao as in the scheme A1ft: on their values of <i>a</i> and <i>b</i> with correct log wo n in the scheme – any two valid reasons	s of 10 factor 1.01 or	

Question	Scheme	Marks	AOs	
15	Finds $\frac{dy}{dx} = 8x - 6$	M1	3.1a	
	Gradient of curve at <i>P</i> is -2	M1	1.1b	
	Normal gradient is $-1/m = 1/2$	M1	1.1b	
	So equation of normal is $(y-2) = \frac{1}{2} \left(x - \frac{1}{2} \right)$ or $4y = 2x+7$	A1	1.1b	
	Eliminates y between $y = \frac{1}{2}x + \ln(2x)$ and their normal equation to give an equation in x	M1	3.1a	
	Solves their $\ln 2x = \frac{7}{4}$ so $x = \frac{1}{2}e^{\frac{7}{4}}$	M1	1.1b	
	Substitutes to give value for <i>y</i>	M1	1.1b	
	Point <i>Q</i> is $\left(\frac{1}{2}e^{\frac{7}{4}}, \frac{1}{4}e^{\frac{7}{4}} + \frac{7}{4}\right)$	A1	1.1b	
	(8 marks)			
	Notes			
M1: Differentiates correctly				
M1: Substitutes $x = \frac{1}{2}$ to find gradient (may make a slip)				
M1: Uses negative reciprocal gradient				
A1: Correct equation for normal				
M1:Attempts to eliminate y to find an equation in x				
M1: Attempts to solve their equation using exp M1: Uses their x value to find y				
A1: Any correct exact form.				

Question	Scheme	Marks	AOs
16(a)	Sets $2xy + \frac{\pi x^2}{2} = 250$	B1	2.1
	Obtain $y = \frac{250 - \frac{\pi x^2}{2}}{2x}$ and substitute into P Use $P = 2x + 2y + \pi x$ with their y substituted		1.1b
			2.1
	$P = 2x + \frac{250}{x} - \frac{\pi x^2}{2x} + \pi x = 2x + \frac{250}{x} + \frac{\pi x}{2} *$	A1*	1.1b
		(4)	
(b)	$x > 0 \text{ and } y > 0 \text{ (distance)} \Rightarrow \frac{250 - \frac{\pi x^2}{2}}{2x} > 0 \text{ or } 250 - \frac{\pi x^2}{2} > 0 \text{ o.e.}$	M1	2.4
	As x and y are distances they are positive so $0 < x < \sqrt{\frac{500}{\pi}}$ *	A1*	3.2a
		(2)	
(c)	Differentiates <i>P</i> with negative index correct in $\frac{dP}{dx}$; $x^{-1} \rightarrow x^{-2}$	M1	3.4
	$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{250}{x^2} + \frac{\pi}{2}$	A1	1.1b
	Sets $\frac{dP}{dx} = 0$ and proceeds to $x =$	M1	1.1b
	Substitutes their x into $P = 2x + \frac{250}{x} + \frac{\pi x}{2}$ to give	A1	1.1b
	perimeter = 59.8m.	(4)	
	Notes	(1)	0 marks)
M1 : Rear expro M1 : Use A1*: Con (b) M1 : Stat A1*: Exp give (c) M1: Atten A1 : Corr M1 : Sets A1: The v	rect area equation rranges their area equation to make <i>y</i> the subject of the formula and attempt ession for <i>P</i> correct equation for perimeter with their <i>y</i> substituted npletely correct solution to obtain and state printed answer es $x > 0$ and $y > 0$ and uses their expression from (a) to form inequality lains that <i>x</i> and <i>y</i> are positive because they are distances, and uses correct es the printed answer correctly. mpt to differentiate <i>P</i> (deals with negative power of <i>x</i> correctly) ect differentiation derived function equal to zero and obtains $x =$ value of <i>x</i> may not be seen (it is 8.37 to 3sf or $\sqrt{\left(\frac{500}{4+\pi}\right)}$).		
Need to see awrt 59.8m with units included for the perimeter.			

Question	Scheme		Marks A	
17 (a)	Way 1: Finds circle equation	Way 2: Finds distance between		
- (0)	$(x\pm 2)^2 + (y\mp 6)^2 =$		M1	3.1a
	$(10\pm(-2))^2 + (11\mp 6)^2$	(-2,6) and (10, 11)	1111	<i>5.1</i> a
	Checks whether (10,1) satisfies their circle equation	Finds distance between $(-2,6)$ and $(10, 1)$	M1	1.1b
	Obtains $(x+2)^2 + (y-6)^2 = 13^2$ and checks that $(10+2)^2 + (1-6)^2 = 13^2$ so states that (10,1) lies on C *	Concludes that as distance is the same (10, 1) lies on the circle C^*	A1*	2.1
			(3)	
(b)	Finds radius gradient $\frac{11-6}{10-(-2)}$ or $\frac{1-6}{10-(-2)}$ (<i>m</i>)		M1	3.1a
	Finds gradient perpendicular to their radius using $-\frac{1}{m}$		M1	1.1b
	Finds (equation and) y intercept of tangent (see note below)		M1	1.1b
	Obtains a correct value for y intercept of their tangent i.e. $35 \text{ or} - 23$		A1	1.1b
	Way 1: Deduces gradient of second tangent	Way 2: Deduces midpoint of PQ from symmetry ((0,6))	M1	1.1b
	Finds (equation and) y intercept of second tangent	Uses this to find other intercept	M1	1.1b
	So obtains distance $PQ=35+23=58*$		A1*	1.1b
			(7)	
			(10	marks)
M1 : Comp A1*: Comp through (10 (b) M1: Ca M1: Fi M1: A	to use information in question to the pletes method for checking that (10) pletely correct explanation with no 0, 1) alculates $\frac{11-6}{10-(-2)}$ or $\frac{1-6}{10-(-2)}$ and $s -\frac{1}{m}$ (correct answer is $-\frac{12}{5}$) attempts $y-11 = their\left(-\frac{12}{5}\right)(x-1)$	(<i>m</i>) (<i>m</i>) or $\frac{12}{5}$) This is referred to as <i>m'</i> 10) or $y-1=their\left(\frac{12}{5}\right)(x-10)$	it that circle	note.
uses vectors to find intercept e.g. $\frac{y-11}{10} = -m'$ A1: One correct intercept 35 or -23 (continued on next page)			page)	

Qu 17(b) continued

Way 1:

M1: Uses the negative of their previous tangent gradient or uses a correct $-\frac{12}{5}$ or $\frac{12}{5}$

M1: Attempts the second tangent equation and puts x = 0 or uses vectors to find intercept

e.g.
$$\frac{11-y}{10} = m'$$

Way 2:

M1: Finds midpoint of PQ from symmetry. (This is at (0,6))

M1: Uses this midpoint to find second intercept or to find difference between midpoint and first intercept. e.g. 35 - 6 = 29 then 6 - 29 = -23 so second intercept is at (-23, 0)

Ways 1 and 2: A1*: Obtain 58 correctly from a valid method.